
MicroRNA signatures in tissues and plasma predict
development and prognosis of computed tomography
detected lung cancer
Mattia Boeria,1, Carla Verria,1, Davide Contea,1, Luca Roza,1, Piergiorgio Modenab, Federica Facchinettia, Elisa Calabròc,
Carlo M. Croced,2,3, Ugo Pastorinoc,2, and Gabriella Sozzia,2,3

aTumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, and cUnit of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale
Tumori, 20133 Milan, Italy; bUnit of Experimental Oncology 1, Centro di Riferimento Oncologico, 33081 Aviano (PN), Italy; and dOhio State University
Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210

Contributed by Carlo M. Croce, January 12, 2011 (sent for review December 22, 2010)

The efficacy of computed tomography (CT) screening for early lung
cancer detection in heavy smokers is currently being tested by
a number of randomized trials. Critical issues remain the frequency
of unnecessary treatments and impact on mortality, indicating the
need for biomarkers of aggressive disease. We explored microRNA
(miRNA) expression profiles of lung tumors, normal lung tissues
and plasma samples from cases with variable prognosis identified
in a completed spiral-CT screening trial with extensive follow-up.
miRNA expression patterns significantly distinguished: (i) tumors
from normal lung tissues, (ii) tumor histology and growth rate, (iii)
clinical outcome, and (iv) year of lung cancer CT detection. Inter-
estingly, miRNA profiles in normal lung tissues also displayed re-
markable associations with clinical features, suggesting the
influence of a permissive microenvironment for tumor develop-
ment. miRNA expression analyses in plasma samples collected 1–
2 y before the onset of disease, at the time of CT detection and in
disease-free smokers enrolled in the screening trial, resulted in the
generation of miRNA signatures with strong predictive, diagnos-
tic, and prognostic potential (area under the ROC curve ≥ 0.85).
These signatures were validated in an independent cohort from
a second randomized spiral-CT trial. These results indicate a role
for miRNAs in lung tissues and plasma as molecular predictors of
lung cancer development and aggressiveness and have theoretical
and clinical implication for lung cancer management.
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Despite recent advances in the management of resected lung
cancer and the use of molecular targeted agents in specific

clinical settings, the cure rate of non-small-cell lung cancer
(NSCLC) remains low due to drug-refractory recurrent and
metastatic disease.
Early detection studies using chest X-rays (1) and, more re-

cently, spiral-computed tomography (CT; refs. 2 and 3), have
reported a significant increase in the number of lung cancer di-
agnoses, without apparent major decrease in advanced cancers
or reduction of mortality in smokers (4). A recent press release
(http://www.cancer.gov) reporting the findings of the largest
randomized trial comparing spiral-CT to chest X-rays showed
a 6.9% reduction in all-cause mortality (−20.3% lung cancer
mortality), but a full report of the results of this trial is not yet
available. A likely explanation of the limited impact of CT
screening on mortality is that perhaps not all aggressive lung
tumors arise from identifiable slow-growing precursors, sug-
gesting a possible paradigm shift in our understanding of the
natural history of lung cancer (5, 6). In this respect, the identi-
fication of biologic and molecular features of indolent and ag-
gressive disease would be critical to define clinically useful
predictors of high-risk lesions.
microRNAs (miRNAs) are small RNA molecules with regula-

tory function and marked tissue specificity that can modulate
multiple targets belonging to several pathways. They are fre-
quently deregulated in cancer (7) and could constitute a new class

of blood-based biomarkers useful for cancer detection and prog-
nosis definition because, for their nature, they seem to remain
rather intact and stable and are detectable with simple assays like
quantitative real-time PCR (qRT-PCR). Initial studies in prostate,
colon, and lung cancer patients showed that plasma levels of
specific miRNAs had remarkable sensitivity and specificity to
distinguish cancer patients from healthy subjects (8–11).
The intent of the present study was to perform an extensive

miRNA profiling of primary lung tumors, paired normal lung
tissues, and multiple plasma samples collected before and at the
time of disease, from two independent spiral CT-screening trials.
We aimed to identify biomarkers able to predict tumor de-
velopment and prognosis, therefore improving lung cancer di-
agnosis and treatment options.

Results
Lung Cancer Detection and Survival. INT-IEO cohort (training set). The
5-y screening plan was completed in 2005, and the final results of
this screening project were partially published (2, 12).
Lung cancer was diagnosed in 38 subjects, 22 in the first 2 y and

16 from the 3rd to 5th y of screening, including one interval cancer
at 4th y. The frequency of stage I was 63% (77% in first 2 y vs. 44%
in the last 3 y), and adenocarcinoma was 71% (95% in first 2 y vs.
63% in the last 3 y; Table S1). Median follow-up time for the 38
lung cancer cases was 75mo, with 60%5-y overall survival (95%C.
I.: 43–74%). Five-y overall survival was 92% for stage I and 7%
for stages II–IV (P < 0.001; Fig. 1A). When the year of detection
was considered, 5-y overall survival was 77% for cancers diagnosed
in the first 2 y compared with 36% for those detected from 3rd to
5th y of screening (P = 0.005; Fig. 1B), indicating that incident
cancers represent amore aggressive disease.Year of detection and
tumor stagewere significantly associated (χ2 test,P=0.034). In the
subset of CT year 1–2/stage I, 5-y survival was 94% (95% C.I.:
65.0–99.1). In the whole group of stage I, after exclusion of one
death from second primary lung cancer and one from end-stage
chronic obstructive pulmonary disorder (COPD), 5-y survival
was 100%.
Multicentric Italian Lung Detection (MILD) cohort (validation set). At the
end of 4th year of screening in the MILD trial, lung cancer was
diagnosed in 53 subjects, 24 in the first 2 y, and 23 in the 3rd and 4th
year. Six interval cancers were diagnosed: one in the 1st y, two in
the 2nd y, and three in the 3rd y. Early stage disease (Ia–Ib) was
diagnosed in 28 (53%) patients, and adenocarcinoma was di-
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agnosed in 30 (57%) of patients. Because this trial is ongoing, no
interim analysis was performed so far. However, even if the me-
dian follow-up time of 23mo is relatively short, we could divide the
53 patients in two groups of reasonable size: 14 patients with poor
prognosis (dead or alive with incurable disease) and 39 patients
with good prognosis (alive without disease).

miRNA Expression Profiling in Tumor and Normal Lung. miRNA
profiles of 28 tumors and 24 paired normal lung tissues were
analyzed using a miRNA microarray platform. Validation of the
differentially expressed miRNAs was done using qRT-PCR.
By class comparison and class prediction analyses (using both

paired and unpaired algorithms), expression of 56 miRNAs was
significantly different at the nominal 0.001 level of the univariate
test. The top 10 deregulated miRNAs that discriminate CT-
detected lung cancer from normal lung tissue were: mir-7, mir-
21, mir-200b, mir-210, mir-219-1, miR-324 (up-regulated), mir-
126, mir-451, mir-30a, and mir-486 (down-regulated; Table 1).
This list included alterations previously identified in symptomatic
lung cancer patients (e.g., mir-21 and the mir-200 family, known
to be involved in pathways such as survival, apoptosis, epithelial-
mesenchymal transition) and some unidentified changes (e.g.,
down-regulation of miR-486 and miR-451).
To validate the results obtained with microarray hybridization,

the levels of the two most regulated miRNAs (mir-21 and mir-
486) were evaluated in tumor and normal samples by qRT-PCR,
which confirmed the previous observation.

miRNA Expression in Tissues Is Associated with Clinical-Pathological
Features. Possible association of miRNA expression profiles with
clinical–pathological characteristics of the patients was then in-

vestigated (Table 2). Two miRNAs (mir-205 and mir-21) sig-
nificantly discriminated adenocarcinoma from squamous cell
carcinoma histotypes (P ≤ 0.001). Mir-518e and mir-144 were
down-regulated in tumors with a faster growth rate, and higher
levels of mir-429, member of the mir-200 family, correlated with
a worse disease-free survival (DFS).
The miRNA expression profile of tumors detected in the first

2 y of the screening was significantly different from the profile of
tumors appearing after the 2nd y, with differential expression of
eight miRNAs (mir-128, mir-129, mir-369-3p, mir-193, mir-339-
3p, mir-185, mir-346, and mir-340). These results indicate that
these groups of tumors display different miRNA profiles asso-
ciated with distinct aggressive features, where the incident
tumors grow faster.
Interestingly, miRNA expression analysis on normal lung tis-

sues also discriminated subjects identified in the first 2 y from
those of later years of screening (miR-126*, mir-126, let-7c, mir-
222, mir-30e, mir-1-2, mir-29b-1, mir-30d-prec, mir-15a, mir-16;
Fig. 2). Significant associations were found between miRNAs
expression in normal lung and reduction of forced expiratory
volume (FEV; mir-379 and mir-29-1*), faster tumor growth (mir-
30d*), DFS of the patients (mir-34b; Table 2). The results
obtained by microarray hybridization were independently vali-
dated by qRT-PCR.
Interestingly, although there was no significant difference in

smoking habits (packs-per-year, time from smoking cessation),
patients detected in years 3–5 showed a higher proportion of se-
vere COPD (GOLD criteria ≥ 2, 33% vs. 5%; χ2 test, P = 0.02).
These findings indicate that specific miRNA signatures in

normal lung microenvironment are associated with tumor ag-
gressiveness and clinical history of the patients.

Pathways Enrichment Analysis. For the miRNA signature dis-
criminating tumor from normal samples, pathway enrichment
analysis was performed using DIANA-mirPath software on the
gene targets predicted by microT-4.0, Pic-Tar, and TargetScan-5.
This analysis showed that many of the predicted miRNA targets
are involved in critical pathway affected in cancer such as sur-
vival, apoptosis, epithelial–mesenchymal transition, and pro-
liferation (Table S2).

miRNA Expression Profiling In Plasma Samples: Study Design. Vali-
dated circulating biomarkers in plasma/serum could potentially
represent the gold standard for a noninvasive routine clinical
application. We reasoned that ideal miRNA biomarkers should
be identified before the onset of the tumors and be able to
predict aggressive versus indolent disease development.
To determine whether specific miRNA signatures are already

detectable in plasma samples collected before the detection of
the disease, we performed high-throughput miRNA expression
profiles of plasma samples using TaqMan microfluidic cards
(Applied Biosystems). We first analyzed plasma samples col-
lected >1 y before disease development and at the time of dis-
ease detection (positive CT/surgery) in the training set (CT-
screening trial INT-IEO). We generated miRNA signatures that
were then validated in plasma samples (also predisease and at
disease detection) of a validation set (CT-screening MILD co-
hort). The clinical–pathological characteristics of training and
validation sets are shown in Table S3. As control groups, we
tested 15 pools of plasma samples (5–7 individuals per pool, 81
individuals in total) collected from disease-free subjects (nega-
tive spiral-CT) from both trials, with age, sex, and smoking habits
distribution similar to those of cases.
Using microfluidic cards, 113 miRNAs were found to be al-

ways expressed in all plasma samples, and a subset of 100
miRNAs was found to be consistently expressed in the 15 control
pools, with a good reproducibility among biological duplicates
(Fig. S1). These 100 miRNAs were then used to identify circu-
lating biomarkers of risk, diagnosis, and prognosis in plasma
samples collected before or in presence of CT-detected disease.

A
Observed survival by year of 

screening
Observed survival by stage

B

Fig. 1. Kaplan–Meier estimates of observed 5-y survival in CT-screening INT-
IEO trial. (A) Data arranged according to the extent of disease: 92% for stage
I (95% CI: 70.0–97.8) and 7% for stage II–IV (95% CI: 0.5–27.5, P < 0.001). (B)
Data arranged according to the year of CT-detection: 77% for lung cancers
detected in the first 2 y of the study (95% CI: 53.7–89.8) and 36% for lung
cancers diagnosed from third to fifth years (95% CI: 13.7–58.7, P = 0.005)

Table 1. Top 10 miRNAs deregulated between tumor and
normal lung tissue (class comparison analysis)

miRNAs deregulated (P < 0.001)

Tumor vs. normal tissues

Direction Fold change

mir-7-2-prec Up 1.3
mir-126 Down 0.4
mir-200b Up 1.3
mir-210 Up 3
mir-219-1 Up 1.6
mir-21 Up 2.9
mir-324-5p Up 1.3
mir-451 Down 0.5
mir-486-5p Down 0.5
mir-30a Down 0.6
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miRNA Ratios as Bioinformatics Tools for miRNA Analysis. Because
the normalization of miRNA data in plasma samples is still
a controversial issue, the ratios between the expression values of all
miRNAs consistently expressed in plasma were computed. Each
value of a singlemiRNAwas compared with the values of all of the
other 99 miRNAs, and 4,950 ratios were obtained and sub-
sequently used to analyze differences between classes of samples
resulting in the definition of ratios with clinical relevance (Mate-
rials andMethods).When usingmicrofluidic cards, there is general
agreement on thenormalization of singlemiRNAexpressionusing
themean values of expression of all miRNAs of each card (13). To
validate the robustness of themiRNAratiosmethod,we compared
the results obtained independently by the two methods in the
microfluidic cards. The results showed that the miRNAs mostly
deregulated in multiple ratios were the same as those detected
using the normalization on the mean expression value, thus con-
firming the robustness of the ratios method.
The use of miRNA ratios seems to be an easily applicable

method with potential for general clinical use that avoids the
need for large scale, high-throughput analyses and was therefore
used to develop clinically useful signatures based on circulating
biomarkers.

Identification of Diagnostic and Prognostic Circulating miRNA Profiles
in Plasma Samples Collected Before and at the Time of Disease De-
tection. Class comparison analysis was initially performed in the
training set to identify a group of miRNA ratios showing statisti-
cally significant differences betweenprediagnostic, diagnostic, and
disease-free plasma (P < 0.05). These ratios were then technically
validated, in a subset of samples, by TaqMan MicroRNA assays.

To assess the consistency of miRNA ratios within the control
pools, we compared the value of each ratio in two control pools
with the mean value resulting from the analysis of the individual
samples composing the pools. We found that the values were
consistent.
However, because some ratios showed a high individual vari-

ability in the control subjects, possibly leading to a high number
of false positives, we considered for further analyses only those
ratios with a minimal intrapool variability.
The signatures obtained were then used to calculate specificity

and sensitivity in an independent validation set.
Because the range of miRNA expression levels in the two

datasets was consistently different, possibly due to a storage ef-
fect (14), the patients in each dataset were compared with the
respective control groups.
For the generation of the signatures predicting clinical outcome

(both before and in presence of CT-detected disease), because of
the small number of events, we grouped the two datasets. Cases
with bad outcome were compared with the respective control
pools, and the signatures obtainedwere then tested for their power
to discriminate patients with bad (dead and alive with disease) or
good (disease free) prognosis in the whole cohort.
miRNA signature identifies individuals at risk to develop lung cancer. To
investigate whether there are molecular markers predicting de-
velopment of lung cancer, samples collected from patients 1 and/
or 2 y before detection of the disease by CT were analyzed and
compared with the control pools of heavy-smoking individuals
(Fig. 3 A and B).
A signature of 16 ratios composed by 15 miRNAs could dis-

criminate correctly 18 of 20 samples from subjects developing
lung cancer in the training set (90% sensitivity) and resulted
positive in only 1 of the 5 control pools (80% specificity). In the
validation set, this signature identified 12 of 15 samples collected
before lung cancer detection by spiral-CT, with sensitivity of 80%

Table 2. Associations between miRNA expression in tumor and normal tissues and clinical–pathological
characteristics of patients

Clinical–pathological characteristics

Tumor tissue Normal tissue

miRNA Direction P value miRNA Direction P value

Histotype (ADC vs. SCC or others) mir-205 Down <0.001
mir-21-pre Up <0.001

Growth rate diameter (≤50% vs. >50%) mir-518e Up <0.001 mir-30d* Up <0.001
mir-144-pre Up <0.001

Disease-free survival (alive vs. dead or relapse) mir-429 Down 0.003 mir-34b Up 0.001

Fig. 2. Clustering analysis on 24 normal lung tissue samples using miRNAs
differentially expressed between patients with tumors detected in the first
2 y and those of later years of screening. Clinical status of the patient (0 =
alive, 1 = dead), tumor stage, and year of tumor detection are reported in
columns A, B, and C, respectively.

at disease1y before2y beforeenrollment

CT- CT- CT+

13
(1 interval cancer)

7
(2 interval cancer)

7
(1 alive with disease)

ALIVE

32
(1 interval cancer)

2DEAD

11105ALIVE
40 samples

34 samples

DEAD 932

at disease1y before2y beforeenrollment

CT- CT- CT+

CONTROLS:

5 POOLS
(27 individuals)

CT-

CONTROLS:

10 POOLS
(54 individuals)

CT-

A

B

Fig. 3. Diagram of samples collection and analysis in the training set (INT-
IEO trial; A) and in the validation set (MILD trial; B).
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and specificity of 90% (AUC-ROC = 0.85, P < 0.0001; Fig. 4A).
The predictive value of this signature was evaluated to be useful
up to 28 mo before the disease, and mir-660, mir-140-5p, mir
451, mir-28-3p, mir-30c, and mir-92a are the most frequently
deregulated miRNAs.
miRNA signature with diagnostic value. Plasma samples collected at
surgery or at time of disease detection by spiral CT were com-
pared with pools of disease-free individuals to identify a miRNA
profile associated with lung cancer diagnosis. In the training set,
a panel of 16 ratios involving 13 different miRNAs classified 16
of 19 patients, with a sensitivity of 84% and a specificity of 80%.
In the validation set plasma samples, 12 of 16 patients were
correctly discriminated, with a sensitivity of 75% and a specificity
of 100% (AUC-ROC = 0.88, P < 0.0001; Fig. 4B).
The lower sensitivity observed may be related to the presence

of a higher number of small, early-stage nodules with indolent
behavior in this series and the inclusion of two patients mis-
classified by both the signature of diagnosis and risk.
The diagnostic signature was then used for class prediction of

predisease plasma samples in the same series. In the training set,
11 of 20 (55%) cases were classified as individuals with disease
and, very interestingly, 10 of these 11 cases were characterized by
poor prognosis (dead or alive with disease) or belonged to the
group of patients identified from 3rd to 5th y of screening. In
the validation set, similar results were obtained, with presence of
the disease signature already in 10 of 15 (66.6%) predisease
plasma samples. Moreover, looking at the three predisease
samples of interval cancer cases (patients who developed lung
cancer few months after a negative CT result), only 1 patient was
classified by the risk signature. Instead, 2 cases (including the 1

identified by risk signature) already displayed the diagnostic
signature 8–9 mo before disease detection. The interval cancer
case not recognized by any signatures had a stage 1a tumor with
good outcome, suggesting the presence of a low-risk nodule.
Only 4 ratios were shared by the signatures of risk and of di-

agnosis, and the miRNAs involved were partially different. mir-
17, mir-660, mir-92a, mir-106a, and mir-19b were the most fre-
quently deregulated at the time of lung cancer diagnosis.
Overall, these findings strengthen the observation that circu-

lating miRNA in plasma is detectable well before clinical disease
detection by spiral CT, indicating the possibility to select high-
risk groups on the basis of miRNA profiling.
miRNA signature of risk to develop aggressive lung cancer.We analyzed
the miRNA expression profiles in predisease plasma samples of
individuals with poor clinical outcome to define a signature of
miRNAs identifying individuals at high risk to develop an ag-
gressive disease.
A signature of 10 ratios, composed of 9 different miRNAs,

identified 5 of 5 patients with poor prognosis (dead or with
progressive disease) in this first set (100% sensitivity and 100%
specificity). In the validation set, 4 of 5 patients with poor
prognosis were correctly classified, including a patient with poor
prognosis who developed an interval cancer. The sensitivity of
this signature in the validation set was 80% with 100% specificity.
mir-221, mir-660, mir-486-5p, mir-28-3p, mir-197, mir-106a,

mir-451, mir-140-5p, and mir-16 are the miRNAs deregulated in
the signature of aggressive disease.
The signature was then used for class prediction of predisease

plasma samples of patients with good prognosis in training and
validation sets. The signature identified 5 of 15 (33.3%) patients

p=0.0001

PAD+
(n=13) 
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(n=18)

Time (months)
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(n=13) 
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(n=18)

PAD+
(n=13) 
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(n=18)

Time (months)

AUC=0.88 
P<0.0001
AUC=0.88 
P<0.0001

BA

C D

SIGNATURE OF 
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mir ratios direction
21/92a up
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17/30c up
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19b/92a up

15b/92a up

28-3p/92a up

28-3p/660 up

17/486-5p up

15b/660 up

106a/486-5p up

17/451 up

SIGNATURE OF RISK OF 
AGGRESSIVE DISEASE

up28-3p/486-5p

up126/486-5p

up21/486-5p

up15b/486-5p

up197/486-5p

up221/486-5p

up17/486-5p

up148a/486-5p

up142-3p/486-5p

up106a/486-5p

directionmir ratios

up140-5p/486-5p

down16/197

up28-3p/660

up28-3p/451

up197/660

up106a/660

up221/660

up28-3p/486-5p

up197/486-5p

up221/451

directionmir ratios

up106a/451

up142-3p/92a
up17/451
up30b/92a
up30c/660
up15b/92a
up142-3p/660
up19b/660
up221/660
up197/451
up140-5p/92a
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up28-3p/660
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directionmir ratios
140-5p/660

P<0.0001
AUC=0.85 

RAD+
(n=17)

RAD-
(n=20)

Time (months)

p=0.0006

RAD+
(n=17)

RAD-
(n=20)

RAD+
(n=17)

RAD-
(n=20)

SIGNATURE OF 
DIAGNOSIS

Sample size 25
Positive group : 15
Negative group : 10

Sample size 26
Positive group : 16
Negative group : 10

SIGNATURE OF PRESENCE 
OF AGGRESSIVE DISEASE

Fig. 4. miRNA expression analyses in plasma samples collected before the onset and at the time of disease. The signatures of miRNA ratios and their direction
in the analyses are listed in the tables. (A) miRNA signature of risk to develop lung cancer and (B) miRNA signature of lung cancer diagnosis. The ROC curves of
samples belonging to the validation set are shown. (C) Kaplan–Meier survival curves of patients with miRNA signatures of risk of aggressive disease (RAD) in
plasma samples collected 1–2 y before CT-detection of lung cancer. (D) Kaplan–Meier survival curves of patients with miRNA signatures of presence of ag-
gressive disease (PAD) in plasma samples collected at the time of CT-detected lung cancer. The RAD- or PAD-positive patients show a significantly worse
survival rate than RAD- or PAD-negative patients (P = 0.0006 and P = 0.0001, respectively).
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in the training set and 5 of 11 (45%) patients in the validation set
(Fig. 4C). Interestingly, in both the datasets, most of these
classified samples belonged to patients whose tumor was detec-
ted after the 3rd y of screening. This finding supports our pre-
vious observation on tissue samples where a distinct miRNA
profile was identified in tumor and normal tissues of the same
patients. Noticeably, among the patients with tumor diagnosed in
the 2nd y of screening (all stage Ia and Ib tumors), only one case
with stage 1b tumor had the risk signature of aggressive disease.
These results suggest that miRNA profiles in predisease

plasma samples are able to predict the development of tumors
with worse prognosis and might even be helpful in pinpointing
those early stage tumors at high risk of aggressive evolution.
miRNA expression in plasma samples at time of disease detection and
prognosis. Then we looked at the association between miRNA
expression and prognosis in plasma samples collected at the time
of lung cancer diagnosis by generating a signature composed by
10 ratios, all containing mir-486-5p. This signature identified 7 of
8 patients with bad prognosis in the training set (88% sensitivity
and 100% specificity). The signature of aggressive disease was
observed also in 2 of 10 samples with good prognosis, one of
these having a stage Ib tumor. In the validation set, only 3 plasma
samples collected in presence of disease of patients with poor
prognosis were available, and 2 of these had the profile of ag-
gressive disease. The third case was misclassified by all of the
analyses performed in all plasma samples collected during
screening evaluations (Fig. 4D).
Again, this signature was used for class prediction of predis-

ease plasma samples of patients in the training and validation
sets. Half of the predisease samples of patients with bad prog-
nosis were positive for both the signatures of aggressive disease,
whereas the predisease samples of patients with good prognosis
that showed the signature of aggressive disease belonged mainly
(5 of 6) to patients with tumors detected after the 3rd y of
screening. It is noteworthy that, although individuals in the
training set have an extended follow-up and 5-y overall survival
data are available, the shorter median follow-up observation
time (14 mo) for patients in validation set might affect the
strength of the prognostic signatures.
mir-486-5p, compared with mir-21, mir-126, mir-15b, mir-

148a, mir-142-3p, mir-17, mir-197, mir-221, mir-28-3p, and mir-
106a, appears to be always down-regulated in plasma of patients
with bad outcome.

Discussion
The investigation of biological and molecular features of in-
dolent and aggressive lung cancer is critical to identify specific
risk markers for lung cancer development, to achieve the earliest
possible prediction and intervention and, potentially, to define
novel therapeutic targets.
In this study, we have focused on the role of miRNAs as

biomarkers of lung disease by taking advantage of the availability
of both tissue samples (tumor and normal lung) and multiple
plasma samples, collected before and at the time of disease de-
tection, from patients enrolled in two different spiral-CT
screening trials with extended follow-up. These patients de-
veloped tumors displaying variable aggressive behavior during
the course of the trials.
Although previous studies reported miRNA expression pro-

files predicting recurrence and prognosis only in lung tumor
samples collected at the time of surgery for symptomatic lung
cancer (15–17), our study provides unique results on miRNA
signatures able to identify the presence of aggressive lung cancer
not only in tumor, but also in normal lung tissues and in plasma
samples of patients. Moreover, miRNAs deregulated in plasma
samples collected before clinical appearance of disease were
powerful molecular predictors of high-risk disease development.
In tumor samples, we confirmed up-regulation of known

miRNAs such as mir-21, a miRNA with proproliferative and
anti-apoptotic function that is reported to target PTEN (18), and
described down-regulation of two miRNAs (mir-486 and mir-
451) that are involved in maintenance of self-renewal capacity of

bronchio-alveolar stem cells (19). Association analyses revealed
that expression of mir-205 and mir-21 are markers linked to
squamous cell carcinoma (SCC) and adenocarcinoma (ADC)
histology, respectively, confirming previous studies on the val-
idity of studying miRNA expression in support of histopatho-
logical diagnosis for a precise classification of tumor histology
(20–22). Interestingly, miRNAs that were deregulated in the
more aggressive tumors identified in later years of screening are
involved in adhesion and invasion pathways: miR-339 was
reported to negatively regulate intercellular cell adhesion mol-
ecule (ICAM)-1 (23), and mir-128a has been involved in TGFβ
pathway promotion of tumor cell invasion and metastasis (24).
This miRNA specifically targets FOXO1A, a transcription factor
involved in AKT signaling and apoptosis inhibition (25).
The finding of miRNA expression profiles associated with

aggressive disease and poor survival in normal lung tissues of the
patients strengthens the existing evidence on the critical in-
fluence of the normal lung microenvironment on tumor de-
velopment and, in the present study, on tumor aggressiveness. It
is possible to speculate that these markers might represent mo-
lecular signs of a “soil” that, after extensive damage caused by
smoking, becomes permissive, or even promoting, for cancer
development. Several miRNAs deregulated in normal lung tissue
of the patients undergoing surgery are involved in major path-
ways linked to cancer. In particular, miR-126 is known to pro-
mote angiogenesis by repressing the inhibitors of VEGF
signaling spred1 and pik3r2 (26), and let-7 is involved in proin-
flammatory programs (27). In addition, AKT signaling is the
major pathway influenced by miR-222 (28), miR-30 regulates
connective tissue growth factor (29), and mir-29b modulates
anti-apoptotic and prometastatic matrix molecules by repressing
Mcl-1 (30). It is also interesting to note the down-regulation of
mir-34b in patients with worse DFS, because mir-34b is a well
known target of p53, which cooperates to control cell pro-
liferation and adhesion-independent growth (31). The observa-
tion of a possible prognostic role of several miRNAs in normal
lung opens up the possibility of innovative therapeutic strategies
targeting the host rather than the tumor itself.
Because circulating miRNAs in plasma could be more tissue-

specific than tumor-specific, we decided to perform a high-
throughput miRNA expression in plasma profiling using micro-
fluidic cards. We then developed multiplex real-time PCR assays
to validate, as single PCR assays, those miRNA signatures sig-
nificantly associated with clinical characteristics of the patients.
We have optimized simple and highly reproducible miRNA
assays and formulated a suitable algorithm for qRT-PCR data
validation in plasma using miRNA reciprocal ratios. Our findings
suggest that the assessment of a number of miRNAs in plasma by
qRT-PCR assays is a potentially useful and clinically applicable
procedure to improve lung cancer management.
miRNAs deregulated in tissue specimens were rarely detected

in plasma samples, further strengthening the high tissue-specificity
of miRNAs and suggesting a predictive role of plasma miRNAs
independent from tissue specimens. We observed that a partially
different set of miRNAs were deregulated in plasma before and at
the time of disease. This finding might be explained by the con-
sideration that genes and pathways necessary in the earlier phases
of disease development are different from those required for the
maintenance and the progression of the tumor.
Overall, the 21 miRNAs composing the signatures of risk,

diagnosis, and prognosis in plasma belong to major pathways:
cellular aging (mir-19b, mir-17, mir-106; ref. 32), bron-
chioalveolar and hematopoietic stem cells renewal (mir-486, mir-
106a, 142-3p; ref. 19), tumor recurrence in stage I NSCLC (mir-
27b; mir-106a; mir-19b; mir-15b mir-16, mi-21; refs. 16 and 33),
and lung cancer aggressiveness (mir-221, mir-222; ref. 34). In
particular mir-17, mir-92a, mir-19b, and mir-106a are oncomirs
belonging to the same family responsible for increased pro-
liferation, repression of apoptosis. and induction of angiogenesis
(35, 36). mir-197 regulates expression of the tumor suppressor
gene FUS1, whose expression is lost in a large proportion of lung
tumors. mir-28-3p is located in a chromosomal region that is
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frequently amplified in lung cancer (3q28; ref. 37). mir-221
blocks PTEN expression leading to activation of the AKT
pathway, and is suggested to play an important role in cell growth
and invasiveness by targeting the PTEN/AKT pathway. Alter-
ations of these pathways represent well established and mean-
ingful risk factors in lung cancer. Finally, in a recent publication
regarding circulating miRNAs, mir-21, mir-126, and mir-486-5p
were also identified as potential blood-based biomarkers with
diagnostic value in NSCLC patients (38).
The identification of miRNA signatures in plasma samples

collected 1–2 y before disease that predict cancer development
and prognosis is potentially useful in the selection of high-risk
individuals who need to undergo spiral-CT surveillance. It is
noteworthy that specific miRNA signatures in predisease plasma
samples are able to predict and discriminate the development of
the more aggressive, early metastatic tumors that are frequently
undetectable by yearly spiral-CT. This information could be
certainly helpful to prompt these individuals in pharmacological
smoking cessation programs and possibly to propose more spe-
cific imaging for detection of occult metastatic disease (e.g.,
PET, whole-body MRI), as well as nontoxic treatments such as
enrollment in prophylactic vaccination programs. Furthermore,
the signature of a potentially aggressive disease could also help
in the clinical management of the frequent early-stage nod-
ules detected during CT-screening trials improving diagnostic
algorithms.
Considering the noninvasive characteristics of plasma sam-

pling and the reproducible and easy detection of miRNA
markers, we envision that plasma-based miRNA biomarkers
could be used in clinical practice and may help to avoid over-

diagnosis and overtreatment of low-risk disease and late de-
tection of high-risk and early metastatic disease.

Materials and Methods
Study Populations, CT Screening Protocols, and Samples Collection. Re-
cruitment of high-risk population and diagnostic imaging workup have al-
ready been described (12, 39) and are reported in detail in SI Materials and
Methods.

miRNA Profiling in Tissues and Plasma Samples. Isolation of total RNA and
miRNA expression profiling are described in detail in SI Materials and
Methods.

Statistical and Bioinformatics Analyses.Microarray and qRT-PCR data handling
and analyses are described in detail in SI Materials and Methods.
Analysis of miRNA ratios in plasma samples. The Ct value of each miRNA
obtained with SDS 2.2.2 (Applied Biosystems) was transformed in the cor-
responding expression value (2−Ct). We then calculated the ratios between
miRNAs, considering only one ratio for each pair of miRNAs. For the ratios
showing statistically significant differences in the class comparison analyses
(P < 0.05), a cutoff value was established with the formula (mean of the ratio
in one class ± SD) to use the ratios as binomial variables in the generation of
different signatures. The control pools from the technical validation of the
training set were used to establish the optimal number of features of each
signature to discriminate patients in the validation set.
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